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Abstract. The Performance Engineering Institute (PERI) originally proposed a tiger team
activity as a mechanism to target significant effort to the optimization of key Office of Science
applications, a model that was successfully realized with the assistance of two JOULE metric
teams. However, the Office of Science requested a new focus beginning in 2008: assistance in
forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger
Team, which is modeling the performance of key science applications on future architectures,
with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have
measured the performance of these applications on current systems in order to understand their
baseline performance and to ensure that our modeling activity focuses on the right versions and
inputs of the applications. We have applied a variety of modeling techniques to anticipate the
performance of these applications on a range of anticipated systems. While our initial findings
predict that Office of Science applications will continue to perform well on future machines from
major hardware vendors, we have also encountered several areas in which we must extend our
modeling techniques in order to fulfill our mission accurately and completely. In addition, we
anticipate that models of a wider range of applications will reveal critical differences between
expected future systems, thus providing guidance for future Office of Science procurement
decisions, and will enable DOE applications to exploit machines in future facilities fully.



1. Introduction
Sustained performance improvements are integral to the DOE Office of Science SciDAC
program’s mission to advance large-scale scientific modeling and simulation. Simulation is a
key investigative technique for disciplines where experimentation is expensive, dangerous, or
impossible. Increased performance can enable faster simulations and more timely predictions,
or it can be used to increase the accuracy of existing physical models, enabling more predictive
simulations. Research enabled by the SciDAC program will have far-reaching effects in fields
such as basic energy, biology, environmental science, fusion energy, and high-energy physics.

The Performance Engineering Research Institute (PERI) tiger team activity targets critical
SciDAC performance needs. The original intent was for each tiger team to focus the efforts of
several PERI researcher on improving performance of an Office of Science application, with the
application selected based on Office of Science mission objectives and application readiness for
the focused effort. Thus, each tiger team was envisioned as a relatively short-term activity (six
months to at most one year). In 2007, our tiger teams had a positive impact on two key DOE
applications participating in the JOULE metric. We improved the performance of a turbulent
combustion code (S3D [1]) on Oak Ridge’s Cray XT5 Jaguar system by 13%. Similarly, we
improved the performance of the Gyrokinetic Toroidal Code (GTC) [2, 3] by 10% on Jaguar and
by 15% on Argonne National Laboratory’s (ANL’s) Intrepid Blue Gene/P system.

In 2008, the Office of Science requested that PERI provide assistance in its ten year facilities
plan. In particular, they wanted PERI to provide guidance in how key applications would
perform across the range of future systems expected to be offered by major vendors in that
period. Thus, we redefined the scope of the tiger team activity to handle this request and
started the PERI Architecture Tiger Team. This team’s goal is to model the behavior of
selected applications and to predict their performance on anticipated future systems instead
of to improve their performance on current systems. For this activity to fulfill the request, we
must consider a wider range of Office of Science applications, and evaluate the suitability of
current and future HPC architectures for the applications. This broader scope has led us to
include nearly all PERI researchers on the Architecture Tiger Team.

Several factors complicate the Architecture Tiger Team’s charge. Large scale simulations are
complex software artifacts for which the performance depends on input and frequently evolves
during the course of a simulation. Further, small source code changes can lead to significant
performance changes. Thus, modeling their performance across a variety of existing architectures
remains a topic of research. For example, modeling at larger scales than are currently run
requires changes to most existing modeling methodologies. In order to model the performance
for systems that will emerge over the ten year period, we must not only overcome these challenges
but also anticipate how the software, as well as the hardware, will evolve.

For these reasons, we have developed a three-part, iterative plan, with each iteration focusing
our modeling effort on a different (or growing) set of applications. First, we extensively measure
the performance of the applications at scale with a variety of state-of-the-art performance
analysis tools. These measurements ensure that we have appropriate versions of the applications:
although we are no longer focused on optimization, we still apply our expertise in this direction.
This activity not only ensures that we base our models on an appropriate version but can also
provide some benefit to the application teams.

Second, we use these measurements and other data to create predictive performance models
that estimate the scaling properties of current applications on future hardware. In the first
iteration of the Architecture Tiger Team, we have applied this strategy to three Office of
Science early science applications: S3D, GTC, and FLASH, an astrophysical thermonuclear
flash simulation. In this paper, we detail the preliminary results of this study, which indicates
that these applications will perform well across the breadth of anticipated architectures.

In the third part of our process, we report findings to the Office of Science and work with



them to select the applications for the next iteration. We are currently engaged in that selection
process for the Architecture Tiger Team’s second iteration. We are employing criteria that
both reflect the importance of the applications to the Office of Science’s mission and attempt to
capture the breadth of characteristics of its applications. Simply put, we must ensure that the
ten year facilities plan reflects the range of needs of the Office of Science’s broad mission.

The rest of this report is organized as follows. We summarize key tools for our large-scale
performance measurement activity in Section 2. Section 3 describes our performance modeling
techniques. In Section 4, Section 5 and Section 6, we detail our initial findings with the S3D,
FLASH, and GTC codes. We then state our initial conclusions and lessons learned for this
on-going activity, including guidance in selecting the next set of applications, in Section 7.

2. Measurement
We have used a wide variety of performance analysis tools to characterize the behavior of
S3D, GTC and FLASH on current Office of Science platforms at scale. The large volumes of
performance data complicate performance measurement on systems such as Jaguar and Intrpeid.
Because these modern parallel applications can have dynamic behavior, understanding their
performance can potentially require measuring all application processes. However, for large
machines, the overhead of data collection and aggregation can perturb running applications,
making the measurements and, thus, the models that we derive from them, inaccurate. Further,
too much performance data can make analysis prohibitively expensive.

2.1. Performance Analysis Tools
To address these challenges, we have employed a wide variety of tools for measuing performance
data of the three applications that we studied in the first iteration of the Architecture Tiger
Team. We briefly describe some of our key performance tools in this section; we present results
of applying them in Sections 4, 5, and 6.

2.1.1. Vampir Vampir [4, 5], an MPI tracing tool developed at TU Dresden, records timelines
of all MPI events in a large application run. Vampir stores the collected data to disk for
postmortem analysis using a sophisticated set of tools. Users can view summary data for any
segment of a trace, and they can also view the trace at varying levels of detail using Vampir’s
zoom features. Vampir traces can consume large amounts of space on disk, but Vampir provides
parallel analysis tools to ease some of the burden of analyzing this data.

2.1.2. mpiP mpiP [6], an MPI profiling tool, measures cumulative time spent in all MPI call
sites across all processes in an application. Like other profiling tools, mpiP only colects statistical
information, as opposed to full trace data like Vampir. mpiP generates a single file, which is
much smaller than a full trace file, but which loses timing information.

2.1.3. TAU The TAU [7] suite of parallel performance tools combines the tracing functionality
of Vampir and the profiling capabilities of mpiP with sophisticated facilities for source
instrumentation as well as facilities for detailed analysis of performance data. While Vampir
and mpiP only support measurement of MPI events, TAU can measure specific functions, code
regions, and user-defined events in parallel applications. The user must recompile his or her
application with the TAU compilers and then re-run a parallel job. TAU then outputs a trace
or profile as desired. TAU also provides extensive data mining and analysis tools for processing
information after it has been measured and stored.



2.1.4. Libra Libra [8] is a tool for scalable load-balance analysis developed at Lawrence
Livermore National Laboratory and the University of North Carolina at Chapel Hill. Unlike
full trace tools, Libra uses aggressive, lossy wavelet compression to reduce the volume of load-
balance data significantly before recording it. Libra can achieve 100:1 to 1000:1 compression
on load-balance data, and it also provides a scalable client-side visualization tool for viewing
recorded traces. Libra records measured code regions by call site.

2.2. Platforms
In the first iteration of the Architecture Tiger Team, we have conducted extensive measurements
of our target applications’ performance on two leadership-class systems. The first system
is Argonne National Laboratory’s Blue Gene/P system, Intrepid. Intrepid contains 163,840
PowerPC 450 cores running at 800 Mhz, and sustained LINPACK performance of 450 Teraflops.
The second system is the Cray XT4 Jaguar system at Oak Ridge National Laboratory. Jaguar
contains 31,328 Opteron cores running at 2.1 Ghz, and has sustained performance of XXX
Teraflops. Both systems use quad-core nodes.

Intrepid and Jaguar have slightly different network and I/O configurations. Jaguar uses a
3D mesh network for communication between nodes, while Intrepid uses a full 3D torus and
also uses a tree network and a barrier network for collective communication. Both systems have
dedicated I/O nodes that relay I/O operations between applications and the parallel filesystem.
On Intrepid, I/O nodes are internal nodes in the tree network. Compute nodes communicate
with I/O nodes through the tree network, and the I/O nodes communicate with the parallel
filesystem over Myrinet links. On Jaguar, the I/O nodes are situated along one side of the 3D
mesh, and compute nodes communicate with them over the mesh network.

3. Modeling
We have developed several techniques to predict performance of DOE applications on leadership
class facilities. In this section, we give a brief overview of these techniques, while we discuss the
results of applying them to S3D, FLASH and GTC in Sections 4, 5 and 6.

3.1. Convolving Machine Profiles with Application Signatures
To predict the performance of applications on future architectures, we have developed
an approach [9] that separates application-specific measurements from machine-specific
measurements. Our approach involves two key components:

Machines Profiles that characterize the rates at which a machine can (or is expected to)
carry out fundamental operations abstract from any particular application;

Application Signatures that characterize the fundamental operations that an application
must execute independent of any particular machine.

Our approach enables performance predictions of applications on current systems by
convolving application signatures with profiles of the existing systems, and on future systems
by convolving the application profiles with profiles generated from the expected performance
parameters of the future systems. Conceptually, a convolution defines an algebraic mapping of
application signatures onto runtimes to arrive at a performance prediction.



Given an application profile A, and a machine profile M , we define P , a matrix of runtimes,
such that pij =

∑p
k=1 ikmkj , or:

 p11 p12 p13

p21 p22 p23

p31 p32 p33

 =

 a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35




m11 m12 m13

m21 m22 m23

m31 m32 m33

m41 m42 m43

m51 m52 m53


e.g., p32 = a31m12 + a33m22 + a33m32 + a34m42 + a35m53

The rows of P correspond to applications while the columns correspond to systems and each
pij is the expected runtime of application i on system j. The rows of A are applications, and
the columns are columns are operation counts. Any row of A is the signature for application
i. Likewise, rows of M are bandwidths measured by some benchmark for a particular system
while each column is the profile of a particular system.

This approach is generic, and we could apply it to measurements from any of the tools
mentioned in Section 2 to produce application signatures targeted at particular types of analysis.
However, in order to reflect the impact of timing considerations, we currently use traces of
memory operations to characterize the fundamental operations of computational code regions
and message traces similar to those produced by Vampir [4, 5]. We then use cache simulation
to convolve the signatures of the computational regions with characterizations of the memory
system obtained with the MultiMAPS benchmark from SDSC. Finally, we use a high-level
network simulation such as Dimemas [10, 11] or SDSC’s PSiNS [12] to convolve message trace
signature with simple network signatures that capture latency and bandwidth and the predicted
performance of the computational regions.

3.2. Modeling Assertions
An alternative modeling strategy, called Modeling Assertions (MA) [13], constructs symbolic
models of application performance. This technique allows users to annotate their code with
expressions revealing the relationships among important input parameters, computation, and
communication. These annotations, in the form of pragmas or directives, capture the anticipated
performance, in terms of time or other metrics, such as cache misses or floating point operations.
As the application runs, the MA library checks the model against application structure and key
model input parameters. Symbolic performance models complement empirically derived models
because the symbolic models expose sensitivities across important parameters and can be scaled
to any parameter range.

3.3. Load Balance Modeling
In addition to models for application runtimes, we have developed models of the load balance
properties of large systems. Libra’s compressed representation of system-wide load balance
traces uses a wavelet approximation to allow for multiscale representations of load balance
properties. The structure of this approximation supports extraction of a low-resolution model
of an application’s load balance without recording exhaustive measurements.

This type of compact model will enable us to verify, possibly with distributed extensions
of MA, that specific processes have workloads within their expected bounds. Further, our
low-resolution models will eventually enable prediction, within some confidence, the evolution
of load on large systems, and to incorporate dynamically derived load balance guidelines to
application-specific load balance components. This solution will dramatically reduce the burden
of large-scale measurement on the application developers, enabling them to concentrate on how
best to redistribute work within their applications.
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(a) S3D Turbulent Combustion. (b) FLASH White Dwarf Deflagration.

Figure 1. Normalized Weak Scaling for Office of Science Codes on Intrepid and Jaguar.

Figure 2. Most Time Consuming S3D Routines on Jaguar at Scale

4. S3D
S3D [1] is the state of the art turbulent combustion simulation. The code, which was developed
at the Combustion Research Facility at Sandia National Laboratory in Livermore, California,
won a 2007 INCITE award for six million hours on the XT3/4 Jaguar system at ORNL’s
National Center for Computational Sciences. S3D solves the compressible reacting Navier-
Stokes equations using high-fidelity numerical methods. Principal components include an eighth-
order finite-difference solver, a fourth-order Runge-Kuttta integrator, a hierarchy of molecular
transport models and detailed chemistry. The use of Direct Numerical Simulation (DNS) enables
scientists to study the microphysics of turbulent reacting flows, as this gives full access to time-
resolved fields and provides physical insight into chemistry turbulence interactions. Perhaps
more importantly, S3D is critical for accurate simulations of larger systems. The detail afforded
by the DNS model enables the development of reduced model descriptions that can be used in
macro-scale simulations of engineering-level systems.

S3D is architected for scalability. It uses a 3D domain decomposition, where each MPI process
manages an equal number of grid points and has the same computational load. Interprocessor
communication in this decomposition is only between nearest neighbors, and S3D uses large
messages and can overlap communication and computation. All-to-all communication is only
required for monitoring and synchronization ahead of I/O.

4.1. Measurement of S3D
Figure 1(a) shows our measurements of the weak scaling behavior of S3D on Intrepid an Jaguar.
On both systems, S3D scales almost perfectly up to 4,096 cores. After this point, runtimes begin
to increase, until at 30,000 processes the runtime is twice that of the baseline, 4-core run on
Intrepid. On Jaguar, our 24,000-core run took approximately 30% longer than the baseline run.

We used optimized TAU instrumentation in order to determine the cause of S3D runtime
increases at scale. Figure 2 shows the top eight entries in the profile; the first three are



Figure 3. Libra MPI Load Balance Profile: Two Checkpoints on Intrepid at 16,384 Cores

(MPI Barrier(), MPI Wait(), and MPI Isend()). S3D spends the bulk of its time in these
routines at large core counts with its default IO scheme that writes a file per MPI task. The
next most time consuming routines (three subroutines: RATX I, RATT I, and GETRATES I; and
two loops) are in the parallel solver. Further correlation studies with TAU showed that the
performance of MPI Barrier(), MPI Wait() were the cause of the scaling problems.

Results applying Libra to S3D reveal the underlying issue: the default IO configuration taxes
the IO systems excessively. Figure 3 shows a Libra plot of two different checkpoint operations
with MPI ranks on the X-axis and time for each task in each checkpoint on the Z-axis. Clearly,
the variance in the MPI times shown in Figure 2 reflect a load imbalance caused by highly variable
times to complete the IO phase across the MPI tasks. Other IO configurations, including one
that performs writes from a subset of the MPI tasks, offer better scaling performance. We are
currently working with Petascale Data Storage Institute (PDSI) to understand and to model
S3D IO behavior as it is a critical component in its overall performance.

4.2. Modeling of S3D
We now detail performance models of S3D’s computational regions, leaving models that include
its IO for future work. The Kiviat diagram in Figure 4(a) shows anticipated memory system
parameters for several hardware vendors, which we anonymize here due to NDA considerations.
The four axes are memory bandwidths for L1, L2, and L3 caches and for main memory (MM).
System 1 represents these parameters for Jaguar. In the diagram, the noticeable difference
between current and future systems are the significant changes in L3 and main memory
bandwidth. Our modeling analysis explores the impact that this difference will have on S3D.

Table 1 shows the results of convolving the machine profiles shown in Figure 4(a) with S3D
memory profiles. These results indicate that the differences in memory system performance
will will impact S3D runtimes significantly. We predict that S3D’s C2H4 problem will perform
well on all expected future systems but it will perform best on those systems with the most
main memory bandwidth. Although not shown here, we note that this effect is not true for all
applications – for example, our predictions indicate the memory system differences will provide
little benefit to WRF, a weather forecasting simulation.

An important consideration for models of S3D is that its memory behavior is scale invariant.
We have compared memory traces across a range of job sizes and found that they are very
consistent under weak scaling. Thus, we have previously shown on Jaguar that we can predict
S3D performance as we scale the number of MPI tasks directly from traces of smaller runs.
Thus, we expect the results shown in Table 1 to hold for much larger systems.

5. FLASH
FLASH is a parallel, block-structured AMR code designed for compressible reactive flows. Its
capabilities span a broad range of applications, from laser-driven shock instabilities to fusion
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CPUs System 1 System 2 System 3 System 4 System 5 System 6 System 7 System 8
8 1 .72 .78 .66 .77 .81 .74 .61

64 1 .73 .78 .67 .77 .81 .73 .62
512 1 .72 .78 .66 .77 .81 .74 .62

Table 1. Prediction of S3D C2H4 Benchmark Performance on Systems Anticipated by 2012

burn in type Ia supernovae. FLASH has demonstrated wide portability by running successfully
on many leadership class systems. It is fully modular, in that its components can be used to
create many different astrophysical applications.

5.1. Measuring FLASH
We measure FLASH’s performance on leadership systems as the number of CPU cycles to
complete 10 FLASH time steps with I/O disabled. Figure 1(b) shows that FLASH scales
well for a white dwarf deflagration simulation on both Intrepid and on Jaguar. We observe
that the curves are similar, increasing slightly as the MPI task count increases. We note that
using a slightly different assignment of MPI tasks to processors makes a significant performance
difference on Intrepid, with the normalized performance very similar to that on Jaguar, with
indications that they might cross at even higher core counts.

5.2. Modeling FLASH
As with S3D, we modeled the memory behavior of the computational phases of FLASH for
three anonymous future architectures for which Figure 4(b) shows memory system profiles. Our
predictions in Table 2 show preliminary results for 128, 256 and 384 cores on those systems
as well as Jaguar and Lonestar, the Sun Infiniband cluster at the Texas Advanced Computing
Center. The reasonable accuracy on the existing systems lends confidence to the predictions
on future systems. Overall, the results demonstrate that FLASH also will perform well on
anticipated future systems and will benefit from improvements to main memory bandwidth.

Our study of FLASH memory traces found that they are not scale invariant. Thus, although
we expect FLASH to scale well based on our empirical measurements, we need to extend our
modeling techniques to extrapolate memory traces from a set of traces gathered from smaller
runs. We are currently pursuing this research direction and initial predictions based on this



CPUs Lonestar Jaguar Prediction of Systems
Predicted Real % err Predicted Real % err Sys. 1 Sys. 5 Sys. 6

128 246 227 8.2 285 258 10.3 195 188 148
256 127 131 -2.8 145 138 5.5 99 95 75
384 86 103 -16.4 99 97 2.0 67 64 51

Table 2. Performance Predictions for FLASH on Current and Future Systems

(a) Unoptimized Particle
Initialization

(b) Optimized Particle Ini-
tialization

Figure 5. GTC Load Balance Without and With Optimized Initialization

work confirm that FLASH will scale reasonably well on future systems although additional work
remains to confirm this hypothesis on the very large processor counts anticipated during the
horizon of the Office of Science’s ten year plan.

6. GTC
The Gyrokinetic Toroidal Code (GTC) is a particle-in-cell code to study microturbulence in
magnetically confined fusion plasmas. GTC solves the gyro-averaged Vlasov equation and the
Gyrokinetic Poisson equation. This global code simulates the entire torus rather than just a
flux tube. Written in Fortran 90/95, GTC was originally optimized for superscalar processors,
but is now a massively parallel code and frequently uses 1024 or more cores.

Our results with GTC are preliminary, but they demonstrate the value of our measurement
activity in ensuring that we use a valid version for modeling. Our initial version of GTC had
portions of the particle initialization commented out. Although it still executed correctly, this
change led to a significant load imbalance even at small scales. Figure 5(a) shows the TAU profile
for GTC on 128 cores of Jaguar with the unoptimized particle initialization. A different color
represents each routine in the figure and each MPI task is a row in the profile. The figure clearly
shows the load imbalance in the staggering of some routines based on the per-task workload.
The optimized particle initialization corrects this imbalance, as the profile in Figure 5(b) shows.
The optimizations result in the profile bars for the routines lining up much more evenly across
tasks, thus improving GTC’s runtime. This test demonstrates the importance of proper test
code configuration for performance modeling.

7. Conclusion
We formed the PERI Architecture Tiger Team in order to assist the Office of Science in
formulating its ten year facilities plan. Our role is to provide confidence that future leadership
class systems will serve the broad range of simulations needed for the Office of Science to fulfill



its mission. The first iteration of our iterative, three phase plan is nearing completion. Its
results clearly demonstrate that S3D will perform well on anticipated future platforms with a
preference for those that provide the highest main memory bandwidth. Our initial models for
FLASH provide similar expectations although we are must complete additional research that
will enable scaling models for applications that do not exhibit scale-invariant memory reference
behavior.

We are currently completing work on measuring and modeling GTC. Our measurement
activity of both GTC and S3D demonstrated its value by ensuring that we model an appropriate
version of the software. As we complete this first iteration, we are preparing for the next. We
are recommending to the Office of Science that we select the next set of applications with a
careful eye towards those that exhibit performance differences on current platforms and that
stress different aspects of memory and network performance. Thus, we anticipate focusing on
at least one latency sensitive application and one bandwidth sensitive application.
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